Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 247(14): 1214-1227, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35695550

RESUMO

Dysregulation of angiogenesis is associated with tumor development and is accompanied by altered expression of pro-angiogenic factors. EGFL7 is a newly identified antigenic factor that plays a role in various cancers such as breast cancer, lung cancer, and acute myeloid leukemia. We have recently found that EGFL7 is expressed in the bone microenvironment, but its role in giant-cell tumor of bone (GCTB) and osteosarcoma (OS) is unknown. The aims of this study are to examine the gene expression profile of EGFL7 in GCTB and OS and compare with that of VEGF-A-D and TNFSF11 using single-cell RNA sequencing data. In-depth differential expression analyses were employed to characterize their expression in the constituent cell types of GCTB and OS. Notably, EGFL7 in GCTB was expressed at highest levels in the endothelial cell (EC) cluster followed by osteoblasts, myeloid cells, and chondrocytes, respectively. In OS, EGFL7 exhibited highest expression in EC cell cluster followed by osteoblastic OS cells, myeloid cells 1, and carcinoma associated fibroblasts (CAFs), respectively. In comparison, VEGF-A is expressed at highest levels in myeloid cells followed by OCs in GCTB, and in myeloid cells, and OCs in OS. VEGF-B is expressed at highest levels in chondrocytes in GCTB and in OCs in OS. VEGF-C is strongly enriched in ECs and VEGF-D is expressed at weak levels in all cell types in both GCTB and OS. TNFSF11 (or RANKL) shows high expression in CAFs and osteoblastic OS cells in OS, and osteoblasts in GCTB. This study investigates pro-angiogenic genes in GCTB and OS and suggests that these genes and their expression patterns are cell-type specific and could provide potential prognostic biomarkers and cell type target treatment for GCTB and OS.


Assuntos
Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Osteossarcoma , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ligação ao Cálcio/genética , Família de Proteínas EGF/genética , Família de Proteínas EGF/metabolismo , Tumor de Células Gigantes do Osso/genética , Tumor de Células Gigantes do Osso/metabolismo , Tumor de Células Gigantes do Osso/patologia , Humanos , Osteossarcoma/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Exp Biol Med (Maywood) ; 247(11): 921-930, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285281

RESUMO

Osteosarcoma (OS) differentially expressed genes (DEGs) have been predicted using the data portal of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET). In this study, we sought to identify cell types that specially express key DEGs (MUC1, COL13A1, JAG2, and KAZALD1) in each of the nine identified cell populations derived from tissues of OS tumors with single-cell RNA-sequencing data. Gene expression levels were pairwise compared between cell clusters and a p value < 0.05 was considered differentially expressed. It was revealed that MUC1 is expressed at high levels in osteoblastic OS cells followed by carcinoma-associated fibroblasts (CAFs) and plasmocytes, respectively. COL13A1 is highly expressed in osteoblastic OS cells, CAFs, and endothelial cells (ECs), respectively. The KAZALD1 gene is expressed in CAFs and osteoblastic OS cells at high levels, but at very low levels in plasmocytes, osteoclasts, NK/T, myeloid cells 1, myeloid cells 2, ECs, and B cells. JAG2 is expressed at significantly high levels in ECs and osteoblastic OS cells, and at relatively lower levels in all other cell types. Interestingly, LSAMP, as an established gene in the development of OS shows high expression in osteoblastic OS cells and CAFs but low in other cells such as osteoclasts. Our findings here highlight the heterogeneity of OS cells and cell-type-dependent DEGs which have potential as therapeutic targets in OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Osteossarcoma/patologia , RNA-Seq
3.
Cell Biochem Funct ; 39(6): 740-753, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165197

RESUMO

The freshwater crayfish is capable of regenerating limbs, following autotomy, injury and predation. In arthropod species, regeneration and moulting are two processes linked and strongly regulated by ecdysone. The regeneration of crayfish limbs is divided into wound healing, blastema formation, cellular reprogramming and tissue patterning. Limb blastema cells undergo proliferation, dedifferentiation and redifferentiation. A limb bud, containing folded segments of the regenerating limb, is encased within a cuticular sheath. The functional limb regenerates, in proecdysis, in two to three consecutive moults. Rapid tissue growth is regulated by hormones, limb nerves and local cells. The TGF-ß/activin signalling pathway has been determined in the crayfish, P. fallax f. virginalis, and is suggested as a potential regulator of tissue regeneration. In this review article, we discuss current understanding of tissue regeneration in the crayfish and various crustaceans. A thorough understanding of the cellular, genetic and molecular pathways of these biological processes is promising for the development of therapeutic applications for a wide array of diseases in regenerative medicine.


Assuntos
Extremidades/fisiologia , Água Doce , Regeneração , Animais , Astacoidea , Crustáceos
4.
J Orthop Translat ; 27: 57-66, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33437638

RESUMO

Generally, mammals are unable to regenerate complex tissues and organs however the deer antler provides a rare anomaly to this rule. This osseous cranial appendage which is located on the frontal bone of male deer is capable of stem cell-based organogenesis, annual casting, and cyclic de novo regeneration. A series of recent studies have classified this form of regeneration as epimorphic stem cell based. Antler renewal is initiated by the activation of neural crest derived pedicle periosteal cells (PPCs) found residing within the pedicle periosteum (PP), these PPCs have the potential to differentiate into multiple lineages. Other antler stem cells (ASCs) are the reserve mesenchymal cells (RMCs) located in the antlers tip, which develop into cartilage tissue. Antlerogenic periosteal cells (APCs) found within the antlerogenic periosteum (AP) form the tissues of both the pedicle and first set of antlers. Antler stem cells (ASCs) further appear to progress through various stages of activation, this coordinated transition is considered imperative for stem cell-based mammalian regeneration. The latest developments have shown that the rapid elongation of the main beam and antler branches are a controlled form of tumour growth, regulated by the tumour suppressing genes TP73 and ADAMTS18. Both osteoclastogenesis, as well as osteogenic and chondrogenic differentiation are also involved. While there remains much to uncover this review both summarises and comprehensively evaluates our existing knowledge of tissue regeneration in the deer antler. This will assist in achieving the goal of in vitro organ regeneration in humans by furthering the field of modern regenerative medicine. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: As a unique stem cell-based organ regeneration process in mammals, the deer antler represents a prime model system for investigating mechanisms of regeneration in mammalian tissues. Novel ASCs could provide cell-based therapies for regenerative medicine and bone remodelling for clinical application. A greater understanding of this process and a more in-depth defining of ASCs will potentiate improved clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...